Aquí hay que hacer un poco de historia. Cuando comenzaron a ser más frecuentes los ordenadores, cada fabricante operaba con un número diferentes de bits, entre 5 y 12, pero la necesidad de que los diferentes ordenadores pudieran intercambiar información hacía necesario que hubiera un estándar. Así, en 1963, se crea el código ASCII (American Standard Code for Information Interchange o Código Estándar Estadounidense para Intercambio de Información) que empezó a trabajar con 8 bits, es decir 8 “espacios” para ceros y unos. Con 8 bits, el número máximo que se puede representar es 255, que en binario equivale a 8 unos. Por eso el antiguo Pac-man se congelaba al llegar a la fase 256. Operaba en 8 bits y no podía ir más allá del 255.
El código ASCII utilizó estas 255 posibilidades para asignar, a cada una de ellas, una letra, un símbolo, un signo de puntuación o un número. De este modo, cuando pulsamos la tecla J, por ejemplo, el ordenador lo convierte en números binarios= 1001010. Estos 8 bits iniciales han ido aumentando a 16, 32, 64, etc. a medida que había más y más transistores en los microchips.
Por otro lado, a la hora de almacenar o procesar fotos, los microchips también trabajan con ceros y unos. Y lo hacen de este modo. Las imágenes están compuestas por pequeños puntos conocidos como pixels. Cada pixel ocupa 3 bytes (un byte equivale a 8 bits), de ese modo, a cada pixel le corresponden una serie de 0 y 1 que lo distinguen de otros colores. Y, con la música más de lo mismo: básicamente cada sonido es una serie de vibraciones en nuestro oído que pueden ser representadas en forma de onda. Cualquier punto en esta onda se puede representar con un número. Por lo tanto, si queremos mejorar nuestra experiencia auditiva, siempre debemos elegir un sistema de audio de 32 bits por encima de uno de 8 bits, ya que habrá más información y matices. Y lo mismo ocurre con los colores.
Básicamente, un microchip busca hacer lo mismo que un cerebro biológico: procesar la información mediante electricidad sirviéndose del interruptor propio de las neuronas. Cuantas más neuronas o transistores, más información puede procesar. Y, al igual que ocurre con el cerebro, también los microchips tienen un límite físico a partir del cual ya no pueden sumar más “neuronas”.
La solución a esto es la computación cuántica. En términos muy sencillos, un ordenador cuántico se sirve de una propiedad de la mecánica cuántica que hace que el qubit (el bit cuántico) pueda ser 0, 1 o ambos al mismo tiempo. ¿Cuál es la diferencia? Hasta la fecha, el ordenador cuántico más potente se encuentra en Holanda y es una iniciativa de la Universidad de Delft e Intel. Tiene “apenas” 49 qubits, pero sería suficiente para, en teoría, superar en capacidad de procesamiento a los superordenadores más potentes del momento.
0 Comentarios
Queremos ver tus comentarios, estos nos enriquecen y ayudan a mejorar nuestras publicaciones :
_______________________________________________